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Abstract

Membership inference attacks (MIAs) are widely used to as-
sess the privacy risks associated with machine learning mod-
els. However, when these attacks are applied to pre-trained
large language models (LLMs), they encounter significant
challenges, including mislabeled samples, distribution shifts,
and discrepancies in model size between experimental and
real-world settings. To address these limitations, we intro-
duce tokenizers as a new attack vector for membership infer-
ence. Specifically, a tokenizer converts raw text into tokens
for LLMs. Unlike full models, tokenizers can be efficiently
trained from scratch, thereby avoiding the aforementioned
challenges. In addition, the tokenizer’s training data is typi-
cally representative of the data used to pre-train LLMs. De-
spite these advantages, the potential of tokenizers as an attack
vector remains unexplored. To this end, we present the first
study on membership leakage through tokenizers and explore
five attack methods to infer dataset membership. Extensive ex-
periments on millions of Internet samples reveal the vulnera-
bilities in the tokenizers of state-of-the-art LLMs. To mitigate
this emerging risk, we further propose an adaptive defense.
Our findings highlight tokenizers as an overlooked yet criti-
cal privacy threat, underscoring the urgent need for privacy-
preserving mechanisms specifically designed for them. !

1 Introduction

Scaling up the pre-training data for large language models
(LLMs) has been shown to improve performance [10,43,44,
52,71]. Nevertheless, the rapid expansion of pre-training data
has also raised concerns about whether these commercial mod-
els are trained on sensitive or copyrighted information [18,68].
For instance, on June 4, 2025, Reddit filed a lawsuit against
Anthropic, alleging the unlawful use of data from its 100 mil-
lion daily users to train LLMs [73]. Furthermore, an increas-
ing body of research [12,41,42] has documented instances in
which LLMs memorize and leak private information.

ICode is available at: https://github.com/mengtong0110/Tokenizer-MIA.
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Figure 1: Evaluation challenges in MIAs against LLMs.

To assess potential data misuse, extensive research has ex-
plored the membership inference attacks (MIAs) in LLMs [54,
88,94, 106]. In particular, an MIA aims to determine whether
a specific data sample or dataset was used to train the target
model (i.e., member) or not (i.e., non-member). To achieve
this, existing MIAs primarily rely on the model’s output
as the attack vector [26, 41, 107]. Although this vector is
widely adopted, these attacks face significant challenges in
reliably demonstrating their effectiveness for LLMs [39, 68],
as shown in Figure 1. The primary obstacle is that faithful
evaluation [44] requires an evaluator to pre-train an LLM
from scratch [103], which incurs significant computational
costs. As a result, existing MIAs are typically evaluated using
LLMs that have already been pre-trained by others. Never-
theless, this may lead to MIA evaluation exhibiting distribu-
tion shifts [26,63] or containing mislabeled samples [68,92].
Furthermore, many of the evaluated models (e.g., Pythia-
12B [8]) are much smaller than practical deployed LLMs (e.g.,
DeepSeek-R1-671B [35]), limiting the ability to assess cur-
rent MIAs in real-world conditions. Given these challenges, a
natural question arises: Can we exploit an attack vector for
MIAs against LLMs that avoids these limitations?

New Attack Vector. Motivated by this question, we explore
a new attack vector that targets other components of LL.Ms.
Typically, an LLM comprises a tokenizer, a transformer net-
work, and an output layer [100]. Among these components,
the tokenizer has been open-sourced in commercial LLMs
such as OpenAlI-03 [75] and Gemini-1.5 [33] to support trans-
parent billing. Building on this observation, we propose the
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Figure 2: Performance of our MIAs on tokenizers of LLMs.
Key Finding: Scaling up LLMs [66] involves expanding the
tokenizer’s vocabulary [46,97] and thus improving its com-
pression efficiency (i.e., bytes per token) [59]. Yet, our figures
show that it also increases tokenizer’s vulnerability to MIAs.

previously overlooked tokenizer as a new attack vector for
membership inference. Specifically, a tokenizer [109] is in
charge of converting text into tokens for LLMs. Its training
data is typically representative of the overall pre-training cor-
pus of the LLM [8,9,100]. Its training process simply involves
merging the most frequent strings into a vocabulary using the
byte-pair encoding (BPE) algorithm [32]. This straightfor-
ward process enables training a tokenizer from scratch, which
aligns with the inference game [103] and avoids mislabeled
samples or distribution shifts. Furthermore, the simplicity of
BPE also makes it feasible to train a tokenizer that matches
those used in state-of-the-art LLMs (see Figure 6).

Despite these advantages, the feasibility of using tokenizers
as an attack vector has not yet been explored. In this paper,
we present the first study to exploit toknizers for MIAs and
propose five attack methods for inferring dataset membership:

* MIA via Merge Similarity. This attack trains shadow to-
kenizers [94] and compares their token merge orders to
that of the target tokenizer. If the merge order of the target
tokenizer closely matches that of shadow tokenizers trained
on a particular dataset, the dataset is classified as a member-.
However, the effectiveness of this attack is limited. Only
a few distinctive tokens display a membership signal in
merge order, making it difficult for membership inference.

* MIA via Vocabulary Overlap. Leveraging these distinc-
tive tokens, we propose a more effective attack, MIA via
Vocabulary Overlap. This attack also involves training
shadow tokenizers. But instead of comparing merge orders,
it classifies a dataset as a member if the distinctive tokens
in the target tokenizer’s vocabulary significantly overlap
with those from shadow tokenizers trained on that dataset.

* MIA via Frequency Estimation. While our results show
that MIA via Vocabulary Overlap achieves strong per-
formance, it requires substantial time to train multiple
shadow tokenizers. For efficient implementation, we in-
troduce MIA via Frequency Estimation, which trains only
a single shadow tokenizer. This attack evaluates whether

training the target tokenizer on a dataset is necessary for
certain tokens to appear in its vocabulary. If this condition
is met, this attack classifies the dataset as a member.

* Additionally, as part of our evaluation in Section 5.1, we
further explore two attack methods for potential alternatives:
MIA via Naive Bayes and MIA via Compression Rate.
We conduct extensive evaluations using millions of In-

ternet data [81]. To match real-world practice, we align the

trained tokenizers in evaluations with those used in commer-
cial LLMs [5,8,35,100]. The experimental results indicate that

MIAs via Vocabulary Overlap and Frequency Estimation

achieve strong performance across various settings. For ex-

ample, MIA via Vocabulary Overlap achieves an AUC score
of 0.771 against a tokenizer with two hundred thousand to-
kens, whereas MIA via Frequency Estimation achieves an

AUC score of 0.740. More importantly, as shown in Figure 2,

our experiments show that scaling laws increase tokenizers’

vulnerability to MIAs. This finding suggests that MIAs could
become more effective on scaled-up tokenizers in the future.

Our Contributions. Our main contributions are as follows:

* We introduce the tokenizer as a new attack vector for mem-
bership inference and conduct the first study demonstrating
its feasibility in LLMs.

* We explore five attack methods for set-level membership
inference against tokenizers, revealing the vulnerabilities
in these foundational components of state-of-the-art LLMs.

* We conduct extensive evaluations using real-world Internet
datasets. The results show that our shadow-based attacks
demonstrate strong performance against tokenizers.

* We further analyze tokenizers from commercial LLMs. The
results show that the tokenizers, such as OpenAI-0200k [75]
and DeepSeek-R1 [35], also contain distinctive tokens for
implementing membership inference.

Main Findings. We have the following key findings:

* According to prior work [46, 66], scaling up the intelli-
gence of LLMs involves expanding the tokenizer’s vocabu-
lary [97] and thus improving its compression efficiency [59].
However, our experimental results show that it also in-
creases the tokenizer’s vulnerability to effective MIAs.

* The membership status of the target dataset with more data
samples is typically more accurately inferred by MIAs.

* While removing infrequent tokens from the tokenizer’s vo-
cabulary can partially reduce the effectiveness of MIAs,
this approach also lowers the tokenizer’s compression ef-
ficiency. Moreover, even with this mitigation, MIAs can
remain effective for inferring large datasets.

Organization. The remainder of this paper is organized as
follows. Section 2 presents preliminaries on tokenizer training
and membership inference. Section 3 introduces the threat
models for membership inference attacks. Section 4 presents
three of our attack methods. Section 5 introduces two addi-
tional methods and reports the experimental results. Section 6
reviews related work. Section 7 discusses the limitations of



LLM dataset inference. Section 8 concludes the paper.

2 Preliminaries

2.1 Tokenizer Training

A tokenizer [109] is a fundamental component in LLMs, con-
verting raw text into a format that the model can process.
Formally, a tokenizer is defined as a function fy : § — V*
that maps an input string s € S (e.g., a sentence or document)
into a sequence of tokens from a vocabulary V. In practice,
this function is learned from a collection of text datasets D.
Specifically, its training objective is to segment and encode the
data in a way that maximizes compression efficiency [109].
This process begins by initializing the vocabulary % with
basic symbols, such as individual characters. During training,
the tokenizer fy iteratively merges the most frequent pairs
of symbols in the data via the byte-pair encoding (BPE) al-
gorithm [93]. This iterative process results in a token merge
order: each token #; € V is assigned an index i corresponding
to the iteration, where it was merged into the vocabulary V.

In commercial LLM applications, the tokenizer also serves
as a basis for token billing. As the tokenizer directly deter-
mines how users are charged based on the number of tokens
in a message, its operation is critical for ensuring transparent
billing [47]. To promote such transparency in token count-
ing, the organizations behind major LLMs [4,33,35,75] have
open-sourced their tokenizers, making their vocabularies and
token merge orders publicly available.

2.2 Membership Inference

The concept of membership inference attacks was first in-
troduced by Shokri et al. [94], who demonstrated that an
adversary can determine whether a specific data record was
included in a model’s training set. Specifically, they propose
to train multiple shadow models that imitate the behavior
of the target model. By comparing the output distributions
of shadow models trained with and without a specific data
record, the adversary can infer whether the data record was
part of the target model’s training data. [29,72,89].

Building upon this foundational research, subsequent stud-
ies [12,13,23,56,58] have investigated the effectiveness of
MIAs on a variety of machine learning models, including
ResNet-18 [40] and BERT [21]. Nonetheless, as models in-
crease in size and are trained on larger datasets over fewer
epochs, the overfitting signal for individual samples decreases,
resulting in reduced MIA performance on LLMs [25]. To ad-
dress this limitation, recent MIAs [42, 84] instead focus on
dataset membership, which aggregates signals from individual
samples to enhance the detection of membership. However,
evaluating these attacks presents significant challenges, such
as mislabeled samples [68], distribution shifts [26], and dis-
crepancies in model size between experimental and real-world

settings. Additionally, the effectiveness of these attacks typi-
cally depends on further assumptions. For example, some [63]
assumes that an adversary has access to the LLM’s output loss,
while another [102] requires the ability to fine-tune the target
LLM. However, these assumptions are not guaranteed to hold
in closed-source LLMs. Moreover, they can be defended by
adding noise during the model training process [108].

3 Threat Models

We consider an adversary who aims to determine whether a
specific dataset was used to train the target tokenizer.

Adversary’s Objective. Given a collection of datasets
Dmem sampled from an underlying distribution D (denoted
as Dmem < D), we write Uarger < 7 (Dpnem) to represent a
tokenizer’s vocabulary ’Vmget is trained by running the BPE
algorithm 7 [32] on Dyem. This training process results in
the target tokenizer fq; . Given a target dataset D € D, the
adversary’s objective is to determine whether D was part of
the training data used to construct the vocabulary ‘Vtarget. To
achieve this, the adversary employs a membership inference
attack 4, which can be formally defined as:

A: D, fy,.. — {01}, )

where 1 indicates D € Dy, and 0 indicates D ¢ Dyen.

Adversary’s Capabilities. We align the adversary’s capabili-
ties with the real-world conditions, where commercial LLMs
such as OpenAl-03 [75], Gemini-1.5 [33], and Claude-2 [4]
have open-sourced their trained tokenizers to support trans-
parent billing. Accordingly, we assume that the adversary
has access to the tokenizer fq/ta_rge[ with its associated vocabu-
lary Warget = {11,12, - - Ve }, where each token #; € Varget
was merged at iteration i during the training process. Further-
more, we assume that the adversary is able to sample auxil-
iary datasets D,,x from the same distribution as the training
data used by the target tokenizer, i.e., Dyyx < D. Leveraging
datasets Dy, the adversary can use the BPE algorithm 7 to
train shadow tokenizers. This assumption is consistent with
previous work [11,58, 88]. It is also realistic in practice, as
the training data for tokenizers is representative of that in
LLMs [8,9,37], both of which are primarily sourced from
publicly available web content [5,35,74].

4 Attack Methodology

In this section, we present our MIAs against pre-trained LLMs.
For each method, we start by introducing our design intuition.
Then we describe the attack methodology.

4.1 Baseline: MIA via Merge Similarity

Shadow-based MIAs [39, 50, 58, 88, 104] involve training
auxiliary models to calibrate predictions. Inspired by these at-



tacks, we formalize MIA via Merge Similarity on tokenizers.

Design Intuition. Prior work [11] has revealed that the
overfitting behavior of machine learning models can vary
depending on whether a particular data point was present
in the training data. Based on this insight, we hypothe-
size that tokenizers may also differ depending on whether
a dataset was included in the training data. Specifically, we
assume that the token merge order can serve as an indicator
of the overfitting phenomenon. Thus, merge orders in vo-
cabularies Vi, = {¥h < T (Daux U{D}) | Daux < D} and
Vout = {Vout < T (Daux \ {D}) | Daux < D} can differ de-
pending on whether the target dataset D was included in the
training data. Building on this hypothesis, an adversary can
exploit this difference by comparing the similarity p of to-
ken merge orders for pairs (¥, arger) and (Vour, Uarget)-
If the average value for p(“¥i, Uarger) is higher than that of
P(Vout, Varget) it is more likely that D € Dep.

Attack Method. This attack consists of four steps.

(i) The adversary randomly samples a collection of datasets
Daux < D for N times, and trains N shadow tokenizers
considering inclusion or exclusion of the target dataset
D. Thus, the adversary obtains sets Vi, and V.

(ii) The adversary computes the similarity of token merge or-
ders for each p(‘Vinv (Vtarget) and p(%uu q/target) via Spear-
man’s rank correlation coefficient [91].

(iii) The membership signal for target dataset D is defined as:

1 + ZfVineVm P(’Vin, {Vtarget) _ Z%uLGVoul p(rVouta rVtarget)
2 4| Vi | 4V ou|

; (2)

where it ranges from O to 1.

(iv) If the membership signal is larger than a decision-making
threshold <, output 1 (member). Otherwise, output 0.

We conduct validation experiments for this attack using
real-world Internet data [81] (see Section 5.2 for detailed ex-
periments). However, the results demonstrate unsatisfactory
performance of MIA via Merge Similarity in distinguishing
between members and non-members. These results are proba-
bly due to the overall distributions of token merge orders in
Vi, and Yy resembling each other, as illustrated in Figure 3.
The minor discrepancies observed between these distributions
suggest weak overfitting signals from the perspective of global
tokens. Consequently, the correlation values of Spearman’s
rank p(Vn, Uarget) and p(Vour, Varger) remain highly similar,
making it hard for to infer the membership of the dataset D.

4.2 Improved MIA via Vocabulary Overlap

Building on the observation that global token distribution can
obscure overfitting signals from the target dataset D, we shift
our focus to a more fine-grained analysis. Specifically, we
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Figure 3: Average merge index for tokens in ¥, and V. It
is shown that overall merge orders in ¥, and ¥, resemble.

solely examine those distinctive tokens whose merge index
differs between the vocabularies Vi, and V. Our analysis
suggests that only when the tokenizer is trained on dataset
D, some distinctive tokens in D are more likely to be over-
fit in its vocabulary. Typically, these distinctive tokens more
frequently appear in Vjj,, but are seldom found in V. As a
result, there exist minor discrepancies between the vocabu-
laries Vi, and V. Leveraging this insight, we propose an
improved approach, MIA via Vocabulary Overlap.

Design Intuition. When a target tokenizer f(Vtarget is trained

on a target dataset D, its vocabulary ‘Vtarget is likely to overfit
the distinctive tokens present in dataset D. In fact, existing
analysis has shown that OpenAl’s tokenizer contains tokens
unique to the Reddit forum [36, 65]. Building on this, we
hypothesize that: the more distinctive tokens from D that are
found in Vareer, the more likely it is that Varee; Was trained on
D. To quantify the overlap of distinctive tokens, one effective
approach is to use the Jaccard index [6], which measures the
similarity between two sets by focusing on the presence of
shared elements. Specifically, an adversary can exploit this by
computing the Vocabulary Overlap using Jaccard index J for
pairs (Vin, Varget) and (Vour, Uarger) in terms of these distinc-
tive tokens. We write Vhon = (Uqz cv,, Yin) N(Ugz v, Vour)
to denote the set of non-distinctive tokens. If the average
value for J(¥n\ Vion: Varget \ Yhon) is higher than that for
J(Vour\ Vaon, Viarget\ Vaon ), it is more likely D € Dinem.

Attack Method. We structure this attack in five steps.
(i) The adversary randomly samples a collection of datasets

Daux < D for N times, and trains N shadow tokenizers
considering inclusion or exclusion of the target dataset



Algorithm 1 MIA via Vocabulary Overlap. We train N
shadow tokenizers with and without target dataset D, filter out
non-distinctive tokens, and compute the membership signal. If
the signal is larger than a threshold 7, the dataset D is inferred
as a member. Otherwise, it is inferred as a non-member.
Input: Target dataset D, vocabulary of target tokenizer
Warget, underlying distribution ID, number of shadow tok-
enizers N, BPE algorithm T, threshold ©

Vin < {}, Vou +{}

for N times do
Diaux <D > randomly sample auxiliary datasets
Vin < T(Daux U{D}) > train IN tokenizer
Vin — Vin U {{Vm}
rVout — T(Q)aux \ {D})
Vout ¢ Vou U {%ut}
end for

> train OQUT tokenizer

A B A U o e

—_— —

‘l/nOH A (U{Vm EVin q/m) m (U{Voulevout %Ut>

Jin — O’ Jout — 0» rVtarget <~ tharget \ rVnon

—_

14: for each ¥, € Vi, do
15: Vi — Vi \ Vhon b filter non-distinctive tokens in Vi,
| rVin N tharget|

16: Jin < Jin+ — =
|rVin U tharget|

> sum Jaccard index in Vi,

17: end for
18: for each Yy € Vou do
19: Viout ’Vout\ Vion > filter non-distinctive tokens in Vi

1, N ‘f/t t

20:  Jout — Jout + M > sum Jaccard index in 'V
‘ %ut U {Vta.rgetl

21: end for

22:

1 Jin Jout
23: SIGNAL < = + -

2 2|Vin‘ 2‘Vout|
24:

25: return 1 [SIGNAL > 1]

D. This process results in vocabulary sets Vi, and V.

(i1) The adversary computes the non-distinctive tokens as:

rVnon:( U (Vm)m( U %ut)~ (3)

'Vin €Vin 'Vin EVout

(iii) The adversary calculates the overfitting signals using the
Jaccard index [6] for each J(Vin\ Vion, Varget \ Vaon) and
J( %ut\ rVnon s thargct\ {Vnon ) .

(iv) The membership signal for dataset D is defined as:
1 Z'Vm €Vin -,( rVin \ rVnon; tharget\ %on)
-+

2|Vin|

. Z%utEVoul J( %ul\ (Vnon ) (Vtarget\ %on)
2W/out ‘ ’
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Figure 4: Distinctive tokens in MIA via Vocabulary Overlap.

where it ranges from O to 1.

(v) If the membership signal is larger than a decision-making
threshold 7, output 1 (member). Otherwise, output 0.

The detailed process of this attack is outlined in Algo-
rithm 1. However, like other shadow-based MIAs [11,94,103],
we find that MIA via Vocabulary Overlap requires multiple
shadow tokenizers (e.g., 96) to effectively capture member-
ship signals. As a result, training such a large number of
shadow tokenizers incurs a substantial time cost.

4.3 Efficient MIA via Frequency Estimation

MIA via Vocabulary Overlap raises a natural question: Can
we design an attack that relies on fewer shadow tokenizers
and thus reduces the overall time cost? To address this, we
investigate whether it is possible to identify distinctive tokens
directly by analyzing their statistical characteristics. Moti-
vated by this, we examine such distinctive tokens and derive
two key insights: @ The distinctive tokens of dataset D ap-
pear infrequently in the training data of the tokenizer trained
on D. ® As shown in Figure 4 and Figure 12, the majority
of occurrences of these distinctive tokens in the underlying
distribution ID are found in the dataset D. Given these charac-
teristics, if dataset D is excluded from the tokenizer’s training
data, the frequency of such distinctive tokens becomes lower.
As aresult, these tokens with low frequency are unlikely to be
merged into the vocabulary during tokenizer training, since
BPE primarily merges the most frequent tokens. This obser-
vation suggests that including dataset D in the training data is
almost a necessary condition for some tokens to be merged
into the tokenizer’s vocabulary. Motivated by these insights,
we introduce the MIA via Frequency Estimation.

Design Intuition. It is hypothesized that tokenizer training
probably exhibits overfitting by incorporating distinctive to-
kens from the training datasets into its vocabulary [36, 65].
Building on this intuition, an adversary could exploit such
overfitting by evaluating whether including dataset D in the
training data is necessary for the merging of some tokens in
vocabulary ’Vtargel. If the presence of such distinctive tokens in
‘Vtarget strongly depends on dataset D, it is likely D € Dyep.
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Figure 5: Relationship between token merge index and fre-
quency in training data, indicating they follow a power law.

Necessity Evaluation. However, no existing metric evaluates
this necessity. To fill this gap, we introduce a new metric:
Relative Token Frequency with Self-information (RTF-SI).

Definition 4.1 (Relative Token Frequency with Self-infor-
mation). Let D denote a data distribution. Given a dataset
D C DD and a target tokenizer’s vocabulary ’Vm,ge,, the Rel-
ative Token Frequency with Self-Information (RTF-SI) of a
token t; € Viarger in D is defined as:

RTF-SI(D,Z‘,‘, tharget) = RTF(ti»D) : SI(tiv {Vtarget)a )

where the relative token frequency (RTF) is calculated as:

RTE(5, D) — — "2
Yoepnp (t)

(6)

with np(t;) denoting the count of token t; in the dataset D. The
self-information (SI) is given by:

SI(th tharget) = - lOgPr (ti | {Vtarget) 5 (7)

where Pr (t; | Viarge:) is the frequency of token t; appearing in
the training data Dyenm associated with the vocabulary ‘erget.
Ideally, this probability is computed as:

Y0/ € Dem 1 (1)

Pr(t; | 7, = )
( i | target) leeq/[arget ZD’GDmem npy (l/)

®)

RTF-SI evaluates whether it is necessary to include dataset
D in the training data for constructing the target vocabulary,
‘I/mga. Building on the classic TF-IDF definition [2, 82,96],
RTF-SI modifies the normalization used in the TF compo-
nent [80]. A high RTF-SI for the target dataset D suggests that:

Table 1: Power-law fit on token frequency in training data.

|Yrge] | 80,000 110,000 140,000 170,000 200,000

Xmin 9,782 9,782 9,782 9,782 9,782
o 1.717 1.604 1.537 1.493 1.460
Std. Error | 0.003 0.002 0.001 0.001 0.001

® Token ¢; is with high self-information, i.e., it appears infre-
quently in the training data of the target tokenizer. ® Dataset
D contributes the majority of token #;’s relative frequency
in the underlying distribution ID. As a result, the absence of
dataset D may significantly affect some merged tokens in
vocabulary ‘Vtarget, indicating that D € Dyep.

Frequency Estimation. In practical implementation, an ad-
versary can estimate the RTF component using auxiliary
datasets D,,x <— . However, the SI component is not directly
observable, as the frequency Pr (ti \ ‘Vtarget) in the training
data is not available. To estimate this, we draw on the power
law [17], which has been widely applied to approximate word
frequency [31,78]. According to the power law, when a list of
measured values exceeding a threshold xp,in € Z~ is sorted in
decreasing order, the n-th value is approximately proportional
to 1/n%, where o € R+ is a constant. As shown in Figure 5,
there is a power-law relationship between token merge order
and frequency. For rigorous verification, we fit the frequency
Pr (t; | ‘Viarget) in a power-law distribution [17]:

1 .
Pr(ti | {Vtarget) o< o where 1; € (Vtarget and i > xmin. ~ (9)

The estimation results in Table | show a small standard error
between the estimated and actual values, which supports using
the power law to approximate the value Pr(z; | 7) in the SI
component. Given this, RTF-SI can also be computed as:

Theorem 4.2 (RTF-SI under the Power Law). Under the
power-law distribution [17], the frequency Pr(t; | Viarge:) of a
token t; € Viarger is proportional to 1/i%:

1
Pr(ti ‘ (Vtarget) o< l.Txa (10)

where i > Xpin, and o € R<q, Xmin € Z~o are constants de-
fined by the power law. Then, RTF-SI can be approximated
by its lower bound:

1, np(t;) | ergetl" o
- ) > ——2——log( '} i*/j%). (11)
b =y epnpy (t;) j:()g’ﬁr 1/ )

The detailed proof of Theorem 4.2 is provided in Ap-
pendix A. The power law allows an adversary to es-
timate RTF-SI without directly accessing the frequency
Pr (ti | ‘Vtarget). Since the power law estimates the frequency
of tokens ¢; € ‘Vtarget with merge index i > xpin, MIA via
Frequency Estimation also concentrates on them.

Attack Method. We outline this attack in four steps below.



Algorithm 2 MIA via Frequency Estimation. We train a
shadow tokenizer to fit the power-law distribution of token fre-
quency, approximate RTF-SI for each token #; € ‘Vtarget where
i > Xmin, and compute the membership signal based on the
maximum RTF-SI. If the membership signal is larger than
a decision-making threshold 7, the dataset D is inferred as a
member. Otherwise, it is inferred as a non-member.
Input: Target dataset D, vocabulary of target tokenizer
Warget, underlying distribution D, sampling times N, BPE
algorithm 7', power-law fit function pl. fit, threshold t

1. D« {}
2:
3: for N times do
4 Dy <D > randomly sample auxiliary datasets
5: D+« Du Daux
6: end for
7: Vihadow < T (Daux) > train shadow tokenizer
8:
9: O, Xmin < pl. fit(‘Vshadow, Daux) > fit token frequency
10: for i = xpjp + 1 to |{Vtarget| do
0. RTE(D,) « — )
ZD’EDU{D} np (1)
[Viarget| -0,
12: SI(y, tharget) + log( Z Tx) > apply Theorem 4.2
J=Xmin+1
13: end for
14:

15: for i = xpjn + 1 to |‘erget| do
16:  RTF-SI(D,t;, Varget) <~ RTF(t;,D) - SI(t;, Viarget)
17: end for

18: RTF-Slpyax < max, RTF-SI(D, t;, Viarger)

€ rVtargeta i>Xmin

19: SIGNAL <« > normalize by sigmoid

1 + ¢ RTF-Sa

21: return 1 [SIGNAL > 1]

(i) The adversary randomly samples a collection of datasets
Daux < D N times, comprising a set D. Then, the adver-
sary trains a shadow tokenizer f%hu o using a Dyyx C D.

(ii) The adversary fits the power-law distribution in Equa-
tion 9 using the vocabulary V;paqow and its training data.
For each token #; € fl/[argel where i > xpin, the adversary
approximate its RTF(D, ;) on set DJ{D}, and estimate
its SI(;, Uarget) Via the fitted power-law distribution.

(iii) Based on the Theorem 4.2, the membership signal for
target dataset D is defined as follows:

np (ti) [Narget|
o max — PV ooy /%), (12)
(tieq/target:i>xmin ZD’g]f))U{D} np/ (ti) j:(x§+]/ ))

RTF(Dt;) SI(1;, Viarget)

where © denotes the sigmoid function [85]. Thereby, the

value of Equation 12 ranges from O to 1.

(iv) If the membership signal is larger than a decision-making
threshold 7, output 1 (member). Otherwise, output 0.

The detailed process of this attack is shown in Algorithm 2.
The membership signal for MIA via Frequency Estimation
is defined as the maximum RTF-SI value for the target dataset
D. Specifically, if including dataset D in the training data
is necessary for at least one token # to be merged into the
vocabulary ‘Vmget, it suggests that the absence of dataset D has
a significant influence on the already constructed vocabulary.
Consequently, it is likely that dataset D is a member-.

5 Attack Evaluation

In this section, we first introduce the experimental settings.
Next, we develop two shadow-free membership inference
methods to serve as additional exploration and baselines. Fi-
nally, we present the evaluation results.

5.1 Experimental Setup

Datasets. According to disclosures from existing LLMs [5,8,
35,100], the training data for tokenizers is primarily sourced
from publicly available web content. To ensure a realistic
evaluation of our attacks, we therefore utilize real-world web
data from the C4 corpus [81] in our evaluation. Specifically,
the C4 corpus is created by cleaning and filtering web pages
from Common Crawl, widely used for training and evaluating
natural language processing models. In our evaluation, we
utilize 1,681,296 web pages across 4,133 websites (i.e., D)
from the C4 corpus, with each website treated as a dataset D.

Tokenizer Training. Following prior work [11,94], we ran-
domly select half of the datasets in D to serve as training
data. Consistent with DeepSeek [7], we train the target tok-
enizers using the HuggingFace library [48]. The tokenizer
vocabulary size ranges from 80,000 to 200,000 tokens, with
the upper bound matching that of OpenAlI’s latest tokenizer,
0200k [75]. For MIA via Merge Similarity and MIA via
Vocabulary Overlap, the adversary trains 96 shadow tokeniz-
ers. For MIA via Frequency Estimation, the adversary sam-
ples the auxiliary datasets 10 times to compose a set ID.

Verification of No Distribution Shifts. As discussed in pre-
vious works [20, 25, 68], distribution shifts between members
and non-members can invalidate the evaluation of MIAs. In
such scenarios, an evaluator [20,68] can exploit bag-of-words
features extracted from test samples and train a random forest
classifier to detect whether a sample was part of the training
data, even without access to the target model. To ensure that
there is no distribution shift in our evaluation, we follow the
methodology of prior work [20] by training a random forest
classifier and leveraging the bag-of-words features to distin-
guish between members and non-members. The experimental
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Figure 6: Comparison of tokenizer utility based on the metric of bytes per token. Specifically, “Ours-80000” refers to our trained
target tokenizer with a vocabulary size of 80,000 tokens. The above experimental results indicate that the utility performance of
the target tokenizers utilized in our evaluations is comparable to that of tokenizers used in state-of-the-art LLMs [33,35,75].

Visualization based on Bag-of-words (AUC = 0.513)

a  Member

Figure 7: Visualization of the test set using t-SNE [62]. The
results confirm no distribution shifts in our evaluation.

results are illustrated in Figure 7. The AUC score of 0.513
via this approach to distinguish members and non-members
confirms the absence of distribution shifts in our evaluations.

Comparison to Commercial Tokenizers. To assess how
well our trained target tokenizers in experimental settings
mimic the commercial tokenizers in the real world, we com-
pare their utility performance using a standard compression
metric: the bytes per token [59]. Specifically, following prior
work [19, 95], we compute the ratio of UTF-8 bytes in a
given text to the number of tokens generated by the tokenizer.
A higher score is desired. We conduct this evaluation across
widely used benchmarks: general English (WikiText-103 [69]),
code (GitHub Code [49]), multilingual content (MGSM [90]),
and mathematics (GPQA [83]). As shown in Figure 6, the
utility performance of our trained tokenizers is comparable to
that of the commercial tokenizers [33,35,75,100].

Attack Baselines. As our work is the first to investigate
MIAs targeting tokenizers, there are no existing baselines
from prior studies. Therefore, we establish our own base-
lines by comparing MIA via Vocabulary Overlap and MIA
via Frequency Estimation with three other methods: MIA via
Merge Similarity (see Section 4.1), as well as two attack meth-

ods we developed. These two attacks are described below:

* MIA via Naive Bayes. Since every token originates from at
least one of the tokenizer’s training datasets, the adversary
can approximate the empirical probability Pr(¢; — D) that
the token t; € 'Vtarge[ comes from the dataset D. Specifically,
this probability Pr(¢; — D) can be represented by:

I’ZD(t,')

Pr(t, » D)= — PV
( ) Ly epuqpy o (ti)

13)

where np(#;) is the frequency of ¢; in D, and D is constructed
by sampling auxiliary datasets D,,x N times as an estima-
tion for distribution . We default to setting N = 10 in
evaluation. The probability that D € Dyepy, is given by:

Pr(D € Dpem) =1-Pr( () t#4D),

1S 'Vtarget

(14)

where t; A D means t; was not sourced from D. Assuming
rare tokens in training data typically come from disjoint
datasets, the probability Pr(D € Dyem) thus can be approx-
imated via the Naive Bayes [101]:

Pr(D € Dpem) = 1= [ Pr(si # D) (15)
tie{Vrare

~1— H (1—Pr(t,-—>D)), (16)
tie(Vrarc

where Vare € Varger is the set of tokens with the top &
merge orders, selected as likely rare tokens in training data
(see Equation 9). The membership signal for the target
dataset D is defined by the probability Pr(D € Dpe ). If it

is larger than a threshold T, output 1 (member); or, output 0.

¢ MIA via Compression Rate. The objective of tokenizer
training is to maximize the compression rate of a given
text corpus [109]. Based on this optimization objective, we
hypothesize that a tokenizer achieves higher compression
rates on datasets it was trained on [38]. Leveraging this
insight, an adversary can calculate the compression rate of
a given dataset D using the metric of bytes per token [59].



Table 2: Comparison of MIAs against target tokenizers. Here, BA denotes the metric of balanced accuracy, and TPR refers to the
metric of TPR @ 1.0% FPR. The bold values indicate the best performance, while the underlined values denote the second-best.
It is observed that MIA via Vocabulary Overlap and MIA via Frequency Estimation outperform other baseline methods.

| (Vtarget‘ = 807000

Itharget‘ = 110,000

| Viarget| = 140,000 | Viarget| = 170,000 | Viarget| = 200,000

Shadow

Tokenizers
Auxiliary
Datasets

Attack Approach AUC BA TPR AUC BA TPR AUC BA TPR AUC BA TPR AUC BA TPR
Compression Rate O O 0507 0513 072% 0509 0.517 0.71% 0508 0514 0.68% 0508 0.513 0.82% 0.509 0.516 0.77%
Naive Bayes, k=20,000 O @ 0.534 0526 3.78% 0526 0.524 344% 0.535 0533 4.11% 0546 0.538 5.86% 0.564 0551 8.03%
Naive Bayes, k=40,000 O @ 0543 0530 5.18% 0546 0.533 6.10% 0542 0537 595% 0550 0.542  7.60% 0.572 0.557 10.70%
Naive Bayes, k=60,000 O @ 0.543 0530 222% 0551 0538 5.57% 0543 0536 2.80% 0553 0545 4.94% 0572 0557 8.86%
Merge Similarity ® @ 0493 0509 1.06% 0494 0507 1.02% 0494 0508 097% 0495 0506 0.92% 0495 0.508 0.87%
Vocabulary Overlap ® O 0693 0.666 26.77% 0.718 0.672 28.75% 0.736 0.696 29.72% 0.761 0.709 32.53% 0.771 0.711 34.61%
Frequency Estimation ® @ 0610 0614 2130% 0.645 0.641 22.00% 0.676 0.660 2241% 0.707 0.681 25.61% 0.740 0.705 27.88%
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Figure 8: Success rate of our attacks on tokenizers with different vocabulary sizes. The experimental results demonstrate that,
when evaluated at low false positive rates, both MIA via Vocabulary Overlap and MIA via Frequency Estimation consistently
outperform other methods. Notably, even at a 0.01% false positive rate, both attacks achieve a true positive rate of nearly 10%.

The membership signal for the target dataset D is defined by
this compression rate. If it is larger than a decision-making
threshold 7, output 1 (member); otherwise, output 0.
Evaluation Metrics. Following prior studies [11,25,94], we
report the MIA performance using three convincing metrics:
* AUC. This metric quantifies the overall distinguishabil-
ity of an MIA by computing the area under the receiver
operating characteristic (ROC) curve [13].
* Balanced Accuracy. This metric (denoted as BA) mea-
sures the overall correct predictions on membership by
averaging the true positive rate and the true negative rate.

* TPR at Low FPR. Proposed by [11], this metric evaluates
the true positive rate (TPR) when the false positive rate
(FPR) is low. Following prior work [41,67], we report TPR
@ 1.0% FPR in our evaluations (denoted as TPR).

5.2 Main Results

Finding 1. According to prior work [46,66], scaling
up the intelligence of LLMs involves expanding the
tokenizer’s vocabulary [97] and thus improving its
compression efficiency [59]. Yet, the results show it
also increases a tokenizer’s vulnerability to MIAs.

Overall Performance. As shown in Table 2, the MIA via
Vocabulary Overlap and the MIA via Frequency Estimation
consistently demonstrate strong performance and outperform
other baseline methods across different vocabulary sizes. For
instance, the MIA via Vocabulary Overlap achieves an AUC
score of 0.771 when evaluated on a target tokenizer with
200,000 tokens, whereas the MIA via Frequency Estimation
achieves a comparable AUC score of 0.740. Beyond these
results, we observe that the performance of both attacks im-
proves as vocabulary size increases. This trend suggests that
MIAs targeting tokenizers in LLMs may become even more
effective as state-of-the-art models continue to scale and adopt
larger vocabularies in their tokenizers [46,66,97]. One pos-
sible explanation is that larger vocabularies contain more
tokens, which may increase the likelihood of merging the dis-
tinctive tokens from the training data. As a result, expanding
the tokenizer’s vocabulary may unintentionally increase its
vulnerability to effective MIAs.

ROC Analysis. The prior study [11] has highlighted the
importance of MIAs being able to reliably infer even a small
number of a model’s training data. To demonstrate this capa-
bility of our MIAs, Figure 8 presents the full log-scale ROC
curves for various attack methods across different vocabulary
sizes. It is observed that both MIA via Vocabulary Overlap



Table 3: Impact of the target dataset size on MIAs. BA denotes balanced accuracy. TPR refers to TPR @ 1.0% FPR. It is observed
that MIA via Vocabulary Overlap and MIA via Frequency Estimation perform better for target datasets with larger sizes.

‘[Vtarge(‘ = 80,000 |[Vtarget‘ = 1107000 ‘(Vlarget‘ = 140s000 ‘[Vtarge(‘ = 170-,000 ‘{Vtargell = 200,000
AUC BA TPR AUC  BA TPR AUC BA TPR AUC BA TPR AUC  BA TPR
|D| € [0,400) 0.672 0.652 21.58% 0.696 0.655 24.76% 0.714 0.676 27.56% 0.737 0.687 27.82% 0.747 0.692 29.22%

Vocabulary Overlap |D| € [400,800) 0.739 0.695 33.73% 0.758 0.718 4127% 0.791 0.755 42.77% 0.808 0.761 43.37% 0.808 0.766 43.67%
|D| € [800,1200) 0.773 0.720 33.75% 0.785 0.757 43.75% 0.797 0.767 45.00% 0.826 0.813 47.50% 0.882 0.838 62.50%

|D| € [0,400) 0.599 0.608 1891% 0.631 0.632 19.73% 0.662 0.648 2031% 0.695 0.668 21.83% 0.729 0.691 25.84%
Frequency Estimation |D| € [400,800)  0.629 0.624 23.49% 0.683 0.662 29.27% 0.728 0.697 3042% 0.747 0.713 31.63% 0.774 0.736 32.83%
|D| € [800,1200) 0.758 0.734 33.75% 0.772 0.756 40.00% 0.774 0.761 41.25% 0.814 0.789 50.00% 0.843 0.810 53.75%

Attack Approach #Dataset Size

Table 4: Time cost (hours) for training N shadow tokenizers, Table 5: Time cost (hours) for MIAs via Vocabulary Overlap

where each tokenizer has a vocabulary size of 200,000. and Frequency Estimation inferring 4,133 target datasets.
Tokenizer Count | N=1 ~N=32 N=64 N=96 N=128 Vocabulary Size | 80,000 110,000 140,000 170,000 200,000

.. . Vocabulary Overlap 1.230 1.608 2.067 2.613 3.375

Training Time | 0.024  0.731 1498 2251 3.054 Frequency Estimation | 0.170 0235 0303 0373 0432

and MIA via Frequency Estimation can reliably infer the 300 |D| € [0, 400), Vocab Size: 200,000 300|D|E[800,1200],Vocab Size: 200,000

: : : : H Member Member

merppershlp of datasets, particularly in regions with l.ow fa!se v — e e

positive rates. For example, when applied to a tokenizer with > >

140,000 tokens, these two attacks achieve true positive rates § 1501 I § 150 '

ranging from approximately 10% to 30% at a false positive B

rate below 1%. Notably, even at a false positive rate of 0.01%, 0 — o = :

both attacks can still achieve a true positive rate of nearly 10%. 049 Membefs'ﬁ?p Signal 01 049 Membe?s'f\?r, Signal 021

Additional ROC curve results can be found in Figure 13. . .
(a) MIA via Vocabulary Overlap  (b) MIA via Vocabulary Overlap

Efficiency Analysis. We further analyze the computational

cost for bOth MIA Via VOCa bulary Overlap and MIA Via |D| €10, 400), Vocab Size: 200,000 |D] €800, 1200), Vocab Size: 200,000
Frequency Estimation across two phases: shadow tokenizer R Member 2 Member
10 s Non-Member 107 s Non-Member

training and the remaining inference. In the phase of shadow
tokenizer training, MIA via Vocabulary Overlap trains multi-
ple tokenizers (e.g., 96), resulting in a high computational
cost. In contrast, MIA via Frequency Estimation requires

training only a single tokenizer, significantly reducing the 08 Memberﬂ;ﬁp Signal 10 08 Member‘;ﬁip Signal 1o
overall cost. As shown in Table 4, this leads to substantial
savings in training time. In the inference phase, MIA via
Vocabulary Overlap involves frequent comparisons across
different tokenizers, whereas MIA via Frequency Estimation
primarily estimates a power-law distribution, a much simpler
computation. Table 5 confirms the shorter inference time of
the latter method. For example, MIA via Vocabulary Overlap
takes over two hours to infer the membership of 4,133 datasets
from a tokenizer with 140,000 tokens. However, MIA via
Frequency Estimation accomplishes the same task in under
20 minutes, making it efficient for large-scale attacks.

(c) MIA via Frequency Estimation (d) MIA via Frequency Estimation

Figure 9: Distribution of members and non-members.

have shown that increasing the amount of data used for mem-
bership inference can improve the attack performance. This
finding is particularly relevant in the context of high-value
litigation nowadays, where the datasets at stake are often mas-
sive [3,73]. Motivated by this, we investigate whether MIAs
can more effectively infer the membership of larger datasets
from the tokenizers. Table 3 presents the performance of MIA

5.3 Ablation Study via Vocabulary Overlap and MIA via Frequency Estimation
for varying-size target datasets. The results show that both

Finding 2. The membership status of the target attacks become more effective as the dataset size increases,
dataset with more data samples is typically more ac- achieving particularly strong performance on large datasets.
curately inferred by MIAs from the tokenizer. For instance, the MIA via Vocabulary Overlap achieves an
AUC score of 0.882 on datasets containing 800 to 1,200

Impact of Dataset Size |D|. Recent studies [42,63,67,79] data samples, whereas the MIA via Frequency Estimation

10



Table 6: MIAs against tokenizers with the min count defense. Here, np;, denotes a threshold. If a token appears fewer than np;y,
times in training data, it is likely a distinctive token and will be excluded from the vocabulary ‘Vmget. \’Vtarget| < 80,000 indicates
the vocabulary size prior to applying defense is 80,000. BA denotes balanced accuracy. TPR refers to TPR @ 1.0% FPR.

‘ ‘Vlﬂrgcll < 80,000

‘[Vlargcl‘ < 110,000

| Virger| < 140,000 | Virger| < 170,000 [Virger| < 200,000

Attack Approach #Min Count
AUC BA TPR AUC BA TPR AUC BA TPR AUC BA TPR AUC BA  TPR
wilo defense  0.693  0.666 26.77% 0718 0.672 28.75% 0.736 0.696 29.72% 0.761 0709 32.53% 0771 0711 34.61%
Vocabulary Overla Wi nmin =32 0.663 0.638 23.57% 0.699 0657 23.76% 0718 0.671 2648% 0736 0.686 28.41% 0746 0.691 30.83%
y P Winmn=48 0663 0638 2357% 0697 0655 23.76% 0714 0671 2579% 0717 0.665 2609% 0734 0683 30.83%
Wi nmin =64 0.663 0.638 21.93% 0.685 0.640 2357% 0.699 0657 23.77% 0707 0663 2648% 0717 0.671 26.48%
wio defense  0.610 0.614 21.30% 0.645 0.641 22.00% 0.676 0.660 22.56% 0.707 0.681 25.61% 0740 0.705 27.88%
Frequency Estimation W/ Mmin =32 0.600 0602 1825% 0.633 0630 2130% 0664 0647 2241% 0695 0669 24.15% 0730 0693 28.80%
quency Wi nmin =48 0598 0598 18.05% 0.633 0.626 21.06% 0.663 0.645 21.78% 0.690 0.663 2323% 0.692 0.664 2541%
W nmin =64 0596 0.600 17.13% 0.630 0.624 20.72% 0.661 0.645 23.81% 0.666 0648 22.36% 0.668 0.648 23.72%
100 . Vocabulary Size: 170,000 Vocabulary Size: 170,000 Table 7: Tokenizer utility measured by bytes per token. Utility
scores that decrease after applying the defense are in red.
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Figure 10: Impact of N. Left: MIA via Vocabulary Overlap,
training N shadow tokenizers. Right: MIA via Frequency
Estimation, sampling auxiliary datasets N times.

achieves a competitive AUC score of 0.843. Figure 9 further
illustrates the relationship between dataset size and the mem-
bership signal in both attacks. As the dataset size increases,
the overlap between the membership signal distributions for
members and non-members decreases, thereby enhancing the
discriminative power of the attacks. This reduced overlap is
likely attributable to the presence of more distinctive tokens
in larger datasets, which serve to strengthen the membership
signal. Additional evaluations illustrating the membership
signal distributions are presented in Figure 14 and Figure 15.

Impact of Hyperparameter N. We further analyze the im-
pact of the hyperparameter N on the performance of MIAs.
Specifically, in the case of MIA via Vocabulary Overlap, an
adversary trains N shadow tokenizers to capture distinctive
tokens. As shown in the left plot of Figure 10, the effective-
ness of this attack improves steadily as N increases. How-
ever, after training more than 112 shadow tokenizers, the
performance gain begins to plateau. In another attack, MIA
via Frequency Estimation, the adversary samples auxiliary
datasets N times to estimate probabilities in membership in-
ference. As shown in the right plot of Figure 10, the effective-
ness of this attack also increases with larger N. Nevertheless,
the performance of MIA via Frequency Estimation tends to
be stable once N exceeds 6. Although the results demonstrate
that both attacks benefit from increasing N, a larger value of
N also incurs greater resource consumption during inference.

11

Tokenizer Utility Measured by Bytes per Token

Benchmark | Vygel| <
w/o defense W/ npin = 32 W/ Nppin = 48 W/ Rpin = 64
80,000 4.873 4.873 (-0.0) 4.873 (-0.0) 4.873 (-0.0)
110,000 4.943 4.943 (-0.0) 4.943 (-0.0) 4.943 (-0.0)
WikiText [69] 140,000 4.986 4.986 (-0.0) 4.986 (-0.0) 4.986 (-0.0)
170,000 5.008 5.008 (-0.0)  5.006 (-0.002)  4.995 (-0.013)
200,000 5.025 5.025(-0.0)  5.012(-0.013) 5.000 (-0.025)
80,000 3.740 3.739 (-0.001)  3.739 (-0.001)  3.738 (-0.002)
110,000 3.853 3.851 (-0.002) 3.851(-0.002) 3.849 (-0.004)
Github [49] 140,000 3.924 3.921 (-0.003) 3.921 (-0.003)  3.918 (-0.006)
170,000 3.973 3.970 (-0.003)  3.967 (-0.006)  3.947 (-0.026)
200,000 4.009 4.006 (-0.003)  3.990 (-0.019)  3.965 (-0.044)
80,000 3.357 3.356 (-0.001)  3.356 (-0.001) 3.355 (-0.002)
110,000 3.476 3.475(-0.001) 3.474 (-0.002) 3.473 (-0.003)
MGSM [90] 140,000 3.601 3.601 (-0.0) 3.601 (-0.0)  3.600 (-0.001)
170,000 3.663 3.663 (-0.0)  3.662 (-0.001) 3.639 (-0.024)
200,000 3.740 3.740 (-0.0)  3.739(-0.001) 3.716 (-0.024)
80,000 3.925 3.924 (-0.001)  3.924 (-0.001)  3.923 (-0.002)
110,000 4.008 4.007 (-0.001)  4.006 (-0.002)  4.003 (-0.005)
GPQA [83] 140,000 4.056 4.055 (-0.001)  4.053 (-0.003)  4.050 (-0.006)
170,000 4.094 4.094 (-0.0)  4.092 (-0.002)  4.086 (-0.008)
200,000 4.117 4.116 (-0.001)  4.109 (-0.008)  4.093 (-0.024)

5.4 Adaptive Defense

Finding 3. Removing infrequent tokens from the tar-
get tokenizer’s vocabulary can partially reduce the
effectiveness of MIAs. However, this mitigation comes
at the cost of reduced tokenizer utility. Moreover,
MIAs remain effective when inferring large datasets.

While defense against MIAs is not the primary focus of this
work, we have also explored the defense mechanism to miti-
gate membership leakage in tokenizers. Specifically, previous
studies [42,94,103] have demonstrated that overfitting signals
are a key requirement for the success of MIAs. This suggests
that methods designed to reduce overfitting may function
as effective defense mechanisms [1, 108]. Building on this
insight, we assume an adaptive defender who mitigates our
attacks by employing mechanisms that reduce the overfitting
of distinctive tokens in the target tokenizer’s vocabulary.

Defender’s Objective. Given the target tokenizer fq/mge‘, the
defender’s goal is to reduce the inference accuracy of MIAs



Table 8: Impact of the target dataset size on defense mechanism (72, = 64). |‘erget| < 80,000 indicates the vocabulary size prior
to applying defense is 80,000. TPR refers to TPR @ 1.0% FPR. The results show our MIAs remain effective on large datasets.

| Viarget| < 80,000

[Varget| < 110,000

‘(Vlarget‘ S 14Os000 ‘[Vtarge(‘ S 170-,000 ‘{Vtargell S 200,000

Attack Approach #Dataset Size
AUC BA TPR AUC BA TPR AUC BA TPR AUC BA TPR AUC BA TPR

|D| € [0,400) 0.646  0.632 19.16% 0.662 0.636 21.25% 0.677 0.642 2125% 0.683 0.647 23.30% 0.694 0.655 24.06%
Vocabulary Overlap |D| € [400,800) 0.703 0.666 21.25% 0.731 0.675 21.58% 0.751 0.699 22.85% 0.761 0.711 32.50% 0.772 0.717 37.95%
|D| € [800,1200) 0.712 0.670 25.30% 0.743 0.702 27.11% 0.768 0.729 30.12% 0.795 0.746 33.73% 0.797 0.761 38.75%
|D| € [0,400) 0.591 0.598 17.50% 0.620 0.619 18.20% 0.651 0.636 20.11% 0.654 0.637 21.07% 0.656 0.639 21.39%
Frequency Estimation  |D| € [400,800) 0.619 0.615 22.29% 0.672 0.653 2831% 0.717 0.682 30.42% 0.718 0.683 31.93% 0.723 0.686 32.83%
|D| € [800,1200) 0.734 0.717 26.25% 0.739 0.731 33.75% 0.744 0.736 33.75% 0.745 0.742 35.00% 0.748 0.746 38.75%

on fq/largel’ while preserving its utility as much as possible.

Defender’s Capabilities. We assume that the defender is
aware of the MIA strategy targeting the tokenizer f%rge‘, in-
cluding the conditions that are important for their success.
Specifically, our attacks rely on the distinctive tokens, which
appear infrequently in the training data and overfit into the
vocabulary ’I/target. As a defense, the defender may modify
the vocabulary ‘Vtarget by identifying and removing such in-
frequent tokens. Thereby, it can mitigate the membership
inference without significantly degrading the tokenizer utility.

Min Count Mechanism. We introduce the min count mecha-
nism as an adaptive defense against our attacks. In this mech-
anism, the defender post-processes the trained vocabulary
q/ta.rget by filtering infrequent tokens. Let nyi, € Z~¢ denote
the filtering threshold, and let np (7;) represent the count of
token #; in dataset D'. For each token #; € Vareer, if the aggre-
gated count ¥y npy(t;) across the tokenizer’s training
data is less than ny,, the defender removes ¢; from trained vo-
cabulary ’Vtarget. Table 6 shows the results of MIAs against to-
kenizers with the min count mechanism. It is observed that, as
the threshold ny,, increases, the defense can partially reduce
the effectiveness of MIAs against tokenizers. However, this
comes at the cost of the tokenizer’s utility. Table 7 shows that
the compression efficiency of bytes per token diminishes un-
der more strict filtering rules. While the min count mechanism
can mitigate some inference risks, our MIAs remain effective,
particularly for large datasets. For example, Table 8 reports an
AUC of 0.797 when applying MIA via Vocabulary Overlap
to infer the membership of datasets ranging in size from 800
to 1,200 samples. Additional experimental results under the
min count mechanism are provided in Figure 9 and Figure 10.

Differentially Private Mechanism. Prior study [57] has
demonstrated that differentially private mechanisms can typi-
cally reduce the vulnerability of membership leakage in ma-
chine learning models. Represented by DP-SGD [1], these
defense methods [22,105] add noise to gradients during model
training, thereby obfuscating the distinction between members
and non-members. However, to the best of our knowledge,
existing research has not investigated the application of differ-
entially private mechanisms specifically designed for LLM
tokenizers. As a result, it remains unclear how differential
privacy can be leveraged to mitigate membership leakage
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Figure 11: Comparison of tokenizers in real-world LLMs.

through tokenizers. Given this, we hope to evaluate our pro-
posed attacks on differentially private tokenizers, should such
mechanisms become available.

5.5 Additional Investigations

Distinctive Tokens in Real-world Tokenizers. Our MIAs
exploit distinctive tokens, which can vary across different to-
kenizers, considering both their occurrence and their merge
indices. A key question is whether real-world tokenizers differ
in such ways that might enable effective MIAs. To investi-
gate this, we compare the vocabularies of tokenizers used in
real-world LLMs [33, 35,75, 100]. Specifically, we limit our
analysis to the first 120,000 tokens of each tokenizer to enable
a fair comparison across varying sizes. Figure 11(a) presents
the similarity between tokenizers’ vocabularies based on the
Jaccard index [6]. If there were no distinctive tokens, we
would expect high similarity scores between any pair of tok-
enizers. However, the evaluation results show that real-world
tokenizers contain a significant number of distinctive tokens,
as evidenced by the maximum Jaccard index of only 0.385
observed between DeepSeek-R1 [35] and Llama-3 [100]. In
addition, Figure 11(b) illustrates the average absolute differ-
ences in the merge index for tokens between any two vocab-
ularies. If there were no significant differences between the
two vocabularies, we would expect only slight variations in
the token merge indices. Nevertheless, the results suggest that
token merge indices also vary largely in real-world tokenizers.



6 Related Work

Tokenizers. Tokenizers play a crucial role in enabling the
generation and comprehension capabilities of LLMs [35,70].
By converting raw text into discrete tokens, tokenizers pro-
vide the input representations that models require for infer-
ence [109]. Recent research has highlighted the connection
between tokenizers and scaling laws, suggesting that larger
models benefit from a larger tokenizer vocabulary, leading to
improved performance under the same training cost [46,97].
Nevertheless, our work reveals that scaling up the tokenizer’s
vocabulary increases its vulnerability to MIAs. We underscore
the necessity of paying attention to these overlooked risks.

MIAs on Classifiers. Membership inference attacks [30,45,
60, 76] are designed to determine whether a specific entity
was included in the training data of a machine learning (ML)
model. These attacks have become fundamental tools for
quantifying privacy leakage in various scenarios [14,51,77].
The first MIA is proposed by Shokri et al. [94], which focuses
on demining record-level membership from ML-based clas-
sifiers. Building on the first work, subsequent research has
examined MIAs under different assumptions regarding the
adversary’s access to the classifier. Sablayrolles et al. [86]
investigate the black-box setting [50], where the adversary
can only access the classifier’s output. They employ Bayesian
learning [28] to approximate optimal strategies for member-
ship inference in this context. In contrast, Leino et al. [53]
explore MIAs in the white-box setting, where the adversary
can access the model’s internal components. They proposed
using confidence scores to improve attack performance for
membership inference. Choquette-Choo et al. [16] develop
the label-only MIAs. They exploit the sensitivity of the output
label to the input perturbation for membership inference.

MIAs on LLMs. Recent studies have underscored the impor-
tance of detecting whether specific data was used during the
pre-training of LLMs, as such data may contain copyrighted
or sensitive information [98,99]. To address these, several
membership inference methods have been proposed. Shi et
al. [92] introduced MIN-K% PROB, a technique that detects
membership by identifying outlier words with unusually low
probabilities in previously unseen examples. Duarte et al. [26]
proposed DE-COP, which probes LLMs using multiple-choice
questions that include both verbatim and paraphrased versions
of candidate sentences. Zhang et al. [107] presented MIN-
K%-++, which leverages the insight that training samples are
likely to be local maxima under maximum likelihood train-
ing. However, these MIA methods face significant evaluation
challenges. Duan et al. [25] argue that existing benchmarks
suffer from a temporal distribution shift between members
and non-members, potentially invalidating evaluation results.
Meeus et al. [68] further observe that many methods may in-
corporate mislabeled samples and use impractical evaluation
models in their experiments. To mitigate these privacy threats,
differential privacy (DP) serves as a principal defense mecha-
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nism [27]. Defenders can leverage these techniques [1,22] to
add noise to the gradients during model training, thereby ob-
fuscating the distinction between members and non-members.
Yet, it is still unknown how to apply DP [24] to tokenizers.

7 Discussion

LLM Dataset Inference. Recent research [64] has empha-
sized the importance of dataset inference in LLM:s. In particu-
lar, existing methods [15,63, 102] attempt to predict whether
a specific dataset was used to train a target LLM by analyzing
the model’s output. However, as noted in Section 1, these
methods face significant challenges during evaluation, such
as mislabeled samples, distribution shifts, and mismatches in
target model sizes compared to real-world models. Further-
more, these attacks typically introduce additional assumptions
about the adversary, such as access to model output loss or
fine-tuning the target model, which are not guaranteed to hold
in closed-source LLMs. Moreover, they can be defended by
adding noise during the model training process [108].

Limitations of Tokenizer Inference. Our work has two
main limitations in its broader evaluation. First, due to the
absence of ground-truth training data for commercial tokeniz-
ers, we are unable to evaluate our attacks on them. Instead,
we conduct evaluations on our trained tokenizers with vo-
cabulary sizes and utility comparable to those of commer-
cial tokenizers (see Figure 6). Notably, this limitation is not
unique to our work but is a common challenge in the field
of membership inference, as also observed in other related
studies [42,50,55,60,63]. Second, our attack evaluations are
restricted to tokenizers used in LLMs. As a result, the feasi-
bility of MIAs on tokenizers for classification models [21,61]
and diffusion-based language models [34, 87] remains unex-
plored, representing a promising direction for future work.

8 Conclusion

In this paper, we review the limitations of existing MIAs
against pre-trained LLMs and introduce the tokenizer as a
new attack vector to address these challenges. To demon-
strate its feasibility for membership inference, we present
the first study of MIAs on tokenizers of LLMs. By analyz-
ing overfitting signals during tokenizer training, we proposed
five attack methods for inferring dataset membership. Ex-
tensive evaluations on millions of Internet data demonstrate
that our shadow-based attacks achieve strong performance.
To mitigate these attacks, we further propose an adaptive de-
fense mechanism. Although our proposed defense can reduce
the membership leakage, it does so at the cost of tokenizer
utility. Our findings highlight the vulnerabilities associated
with LLMs’ tokenizers. Through this endeavor, we hope our
research contributes to the design of privacy-preserving tok-
enizers, towards building secure machine learning systems.
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A Proof of Theorem

Theorem 4.2 (RTF-SI under the Power Law). Under the
power-law distribution [17], the frequency Pr(t; | Viarge:) of a
token t; € Viarger is proportional to 1/i*:

1
Pr(ti | rerget) < iia’

a7
where i > Xmin, and o € R<q, Xmin € Z~o are constants de-
fined by the power law. Then, RTF-SI can be approximated
by its lower bound:

np ( ti) ‘ ‘Vtarget ‘(x o
RTF-SI(D, t;, Viarge:) > log( ) i*/j%). (18)
iy Viarget ZD,eDnD/(ti) j:X§1+1

Proof. Given that Pr(t; | Varget) o< l.%x, let us assume
PI‘([,' | tharget) = C/iaa (19)

where C € R is a constant. Since the sum of the frequencies
Pr(t; | Varger) for all t; € Viarger is at most 1, it follows that

‘ 'Vtarget ‘ ‘ q/target‘
1> Z Pr([j | (Vtarget) = Z C/ja~ (20)
J=Xmin+1 J=14Xmin

19

Therefore, the upper bound for the constant C is

Cc< !

_ 21
- Z‘ {Vlarget‘ ( )

1
J=Xmin+1 %

Using Equations 19 and 21, we derive the upper bound for

the frequency Pr(t; | Varger):

1
Z‘ thargel ‘

1
J=*min+1 j*

Pr(ti | {Vtargct) S (22)

l'O(

Taking the negative logarithm, the self-information of #; is
bounded from below:

‘IVlarget‘
Sl(tia ‘Vtarget) = —IOgPr(ti | rVLarget) > log( Z ia/ja)- (23)
J=Xmin+1
Therefore, the RTF-SI satisfies:
“Vtargctl
np(t;) o/
RTF—SI(D,I‘, rl/t 1) > — -]Og( l(x/](x). 24)
b Yoepnp (i) j:xgﬁl

This theorem allows an adversary to approximate the RTF-SI
using its lower bound under a power-law distribution. O



Table 9: Impact of the target dataset size on defense mechanism (72, = 32). |‘Vmget| < 80,000 indicates the vocabulary size prior
to applying defense is 80,000. TPR refers to TPR @ 1.0% FPR. The results show our MIAs remain effective on large datasets.

| Viarget| = 80,000 | Viarget| = 110,000 | Yharget| = 140,000 [ Viarget| = 170,000 | Yharget| = 200,000
AUC BA TPR AUC BA TPR AUC BA TPR AUC BA TPR AUC BA  TPR
|D| €[0,400)  0.646 0.632 2125% 0677 0.642 2125% 0694 0655 2330% 0706 0663 2444% 0717 0669 25.14%

Vocabulary Overlap |D| € [400,800) 0.703 0.667 21.25% 0.761 0.711 22.85% 0.772 0.717 33.73% 0.793 0.730 34.94% 0.810 0.742 40.06%
|D| € [800,1200) 0.712 0.670 25.30% 0.768 0.729 30.12% 0.798 0.761 38.75% 0.823 0.775 43.75% 0.840 0.800 46.25%

|D| € [0,400) 0.586 0.591 16.36% 0.617 0.616 20.11% 0.649 0.635 20.62% 0.682 0.657 21.01% 0.720 0.683 26.99%
Frequency Estimation  |D| € [400,800) 0.611 0.615 17.78% 0.675 0.650 25.00% 0.720 0.683 29.52% 0.739 0.702 30.42% 0.763 0.721 33.43%
|D| € [800,1200) 0.723 0.714 25.00% 0.742 0.716 35.00% 0.758 0.729 35.00% 0.785 0.759 47.50% 0.820 0.805 52.50%

Attack Approach #Dataset Size

Table 10: Impact of the target dataset size on defense mechanism (7, = 48). \‘Vtarget| < 80,000 indicates the vocabulary size
prior to applying defense is 80,000. TPR refers to TPR @ 1.0% FPR. The results show MIAs remain effective on large datasets.

"Vlargel‘ = 803000 |'Vtarget =1 107000 “Vtarget = 1407000 "Vlarget = 1707000 H/target = 2003000
AUC BA TPR AUC  BA TPR AUC BA TPR AUC BA TPR AUC BA TPR
|D| € [0,400) 0.646 0.632 21.25% 0.677 0.642 21.25% 0.687 0.645 22.85% 0.694 0.655 23.30% 0.710 0.667 27.12%

Vocabulary Overlap |D| € [400,800)  0.704 0.667 21.58% 0.761 0.711 2222% 0.772 0.717 30.00% 0.775 0.721 34.64% 0.790 0.730 34.94%
|D| € [800,1200) 0.712 0.670 25.30% 0.768 0.729 30.12% 0.774 0.738 30.72% 0.798 0.761 38.75% 0.823 0.767 45.00%

|D| € [0,400) 0.586 0.591 16.36% 0.617 0.616 18.20% 0.649 0.634 19.92% 0.680 0.652 21.01% 0.680 0.654 22.79%
Frequency Estimation  |D| € [400,800) 0.588 0.597 16.93% 0.619 0.623 20.11% 0.650 0.635 20.62% 0.682 0.657 21.64% 0.720 0.683 26.99%
|D| € [800,1200) 0.616 0.611 20.48% 0.681 0.659 28.01% 0.719 0.692 28.92% 0.731 0.693 31.93% 0.736 0.699 32.53%

Attack Approach #Dataset Size

Table 11: Impact of the target dataset size on defense mechanism (7, = 64). \'Vmged < 80,000 indicates the vocabulary size
prior to applying defense is 80,000. TPR refers to TPR @ 1.0% FPR. The results show MIAs remain effective on large datasets.

"Vlargel‘ < 803000 |‘Vtargel‘ < ]]07000 “Vtarget < 1407000 "Vlargel‘ < 170:000 “Vlargetl < 200:000
AUC BA TPR AUC BA TPR AUC BA TPR AUC BA TPR AUC BA TPR
|D| € [0,400) 0.646  0.632 19.16% 0.662 0.636 21.25% 0.677 0.642 21.25% 0.683 0.647 23.30% 0.694 0.655 24.06%

Vocabulary Overlap |D| € [400,800)  0.703 0.666 21.25% 0.731 0.675 21.58% 0.751 0.699 22.85% 0.761 0.711 32.50% 0.772 0.717 37.95%
|D| € [800,1200) 0.712 0.670 25.30% 0.743 0.702 27.11% 0.768 0.729 30.12% 0.795 0.746 33.73% 0.797 0.761 38.75%

|D| € [0,400) 0.591 0.598 17.50% 0.620 0.619 18.20% 0.651 0.636 20.11% 0.654 0.637 21.07% 0.656 0.639 21.39%
Frequency Estimation ~ |D| € [400,800) 0.619 0.615 22.29% 0.672 0.653 2831% 0.717 0.682 30.42% 0.718 0.683 31.93% 0.723 0.686 32.83%
|D| € [800,1200) 0.734 0.717 2625% 0.739 0.731 33.75% 0.744 0.736 33.75% 0.745 0.742 35.00% 0.748 0.746 38.75%

Attack Approach #Dataset Size
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